Future Moon Mission Opportunities

Presentation at the Lunar Science Conference

James L. Green
Director, Planetary Science Division

nar Mission TIMEIINE

Lunar Exploration Missions

unar Reconnaissance Orbiter (LRO)

- Lunar mapping, topography, radiation characterization, and volatile identification
- 50km polar orbit
- One year operations
- ESMD Mission

unar CRater Observation and Sensing Satellite (LCROSS)

- Investigate the presence of water at the South Pole via a kinetic impactor and shepherding spacecraft
- ESMD Mission

RO Prime Science Mission

DQD funde I RO avtandad mission

Moon Mineralogy Mapper (M³)

<u>Team</u>

PI: Dr. Carle Pieters, Brown University

Mission

- M3 Instrument on Chandrayaan-1, India's first deep space mission.
- One of 11 instruments (5 of which are non-ISRO, 2 of which are from the US)
- Launch Date: Sept-Oct 2008 on ISRO's Polar Satellite LV
- Lunar Orbit: 100 km, polar
 - Operational life: 2 years

<u>Objectives</u>

- Produce a Global Map of the Mineralogy content Lunar surface at 140 m and 40 nm spectral resolution.
- Investigate specific targets at high spatial and spectral resolution
- Investigate the possibility of surface water ice at the lunar poles

<u>Instrument</u>

 A grating spectrometer, operating over the spectral region of 0.43 to 3 microns (Visible/Near IR)

GRAIL: Gravity and Interior Laboratory

eam: PI Maria T. Zuber (MIT), DPI vid E. Smith (GSFC), PM David H. nman (JPL), PS Michael Watkins PL), Co-I's from JPL, GSFC, UA, ashington University, CIW/DTM, IPGP.

oals: Determine the structure of the ar interior from crust to core; advance derstanding of the thermal evolution of Moon; extend knowledge gained from Moon to the other terrestrial planets.

lission: Provide a global, highcuracy (<10mGal),high-resolution km) lunar gravity map; build upon ccessful GRACE mission; adapt flighteven LM XSS-11 bus to the duel acecraft design.

- <u>Instrument:</u> Ka-band ranging determines the precise instanta relative range-rate of the two s/ instrument is based on GRACE
- Flight: 3–4 month low energy lunar cruise; LOI maneuvers so

Lunar Atmos. & Dust Environment Explo

LADEE examining the lunar atmosphere/exosphere

- Science Definition Team Report released May 23, 2008
- Chair: Laurie Leshin, GSFC

Science:

- Objective 1: Determine the composition of the lunar atmosphere and investigate the processes that control its distribution and variability, including sources, sinks, and surface interactions
- Objective 2: Characterize the lunar exospheric dust environment and measure any spatial and temporal variability and impacts on the lunar atmosphere

Instruments:

- Neutral mass spectrometer Paul Mahaffy/GSFC
- Ultraviolet/visible spectrometer Tony Colaprete/ARC
- Dust Detector to solicited in SALMON
- Demo: Laser communications

Themis Mission Extension to the Moon: Arto

- Heliophysics mission to study plasma wake effects - 2 of the 5 s/c
- Complements LADEE observations.
- Lunar Surface:
 - Study composition and distribution of sputtered ions
 - Understand crustal magnetic fields, surface charging
 - Remotely sense surface properties of lunar regolith
- Lunar Exosphere:
 - Study composition, distribution of exospheric ions under a variety of solar wind and magnetospheric conditions

Probe instruments:

ESA: ElectroStatic Analyze (cols: Carlson and McFadd SST: Solid State Telescope FGM: FluxGate Magnetome

ILN Missions

- International Lunar Network (ILN) missions
 - First two ILN anchor nodes 2013-2014
 - A second pair of ILN nodes in 2016-2017
 - Investigating use of Radio Isotope Power
- ILN is designed to emplace 6-8 stations on the lunar surface - fixed or mobile
- NASA is studying the option for a lunar comm relay orbiter for lunar far-side nodes

- Each ILN station:
 - Has a core set of instrument types (e.g., seismic, laser retroreflector, heat flow) requiring broad geographical distribution
 - Could also include additional instruments as desired by the sponsoring space agency
 - Could also include additional passive, active, ISRU, or engineering experiments, as desired by each sponsoring space agency

new Fromiers Program

1st NF mission <u>New Horizons:</u>

Pluto-Kuiper Belt Mission

2nd NF mission JUNO:

Jupiter Polar Orbiter Mission

inched January 2006

3rd NF mission oppc

South Pole Aitken Basin Sample Return

Venus In Situ Explorer (VISE)

Network Science

Trojan/Centaur

Asteroid Sample Return

lo Observer

Supporting Research Activities

unar Supporting Research & Techn

- LRO Participating Scientist Program
 - Selection completed on March 5, 2008
- Lunar Advanced Science & Exploration Research program (LASER)
 - Basic & Applied lunar research
 - Selection completed in May 2008
- Moon & Mars Analog Mission Activities Program (MMAMA)
 - Designed to enhance science integration into the Explor architecture & technology development process
 - Selection completed on May 18, 2008
- NASA Lunar Science Institute Cooperative Agree Notice for nodes

Technology and Instrumentation

- Lunar Sortie Science Opportunities (LSSO)
 - One-year concept studies
 - Selected 14 studies last year
 - Spans geology, geophysics, physics, astronomy, & astrophysics
- Planetary Instrument Definition & Development Program (PIDDP)
 - Several lunar-focused instruments selected in 2007
 - Augmented in 2008 for add'l lunar instrument development
- Stand-Alone Mission of Opportunity Notification (SALMON)
 - Call for instruments will include Lunar dust instrument on LAC
 - To be released in August 2008
- Discovery and Mars Scout Mission Concept Stud
 - New concepts using a GFE Radioisotope Power System
 - Received 41 proposals

Advanced Stirling Radioisotope Generator Engineering Unit

Operation in space and on surface of atmosphere-bearing planets and moons

Characteristics:

- -≥14 year lifetime
- -Nominal power: 140 We
- $-Mass \sim 20 \text{ kg}$
- −System efficiency: ~ 30 %
- -2 GPHS ("Pu²³⁸ Bricks") modules
- -Uses 0.8 kg Pu²³⁸

Engineering Model and Test Program successfully completed in June 2008.

Paired with it sleeve

Concept Studies - Selections

aines, Kevin	JPL	Venus	Aerial Vehicle	Polar VALOR: The Feasibility of A Nuclear-Polar Duration Balloon Mission to Explore the Poles
phic, Richard	Los Alamos National Laboratory	Moon	Lander	Locating and Characterizing Lunar Polar Volator of a Discovery-Class Mission
olliff, Bradley	Washington University	Moon	Rover	Journey to the land of Eternal Darkness and lu Lunar Polar Volatile Explorer
vkin, Andrew	Applied Physics Lab	Asteroid	Lander	Ilion: An ASRG-Enabled Trojan Asteroid Missi
echt, Michael	JPL	Mars	Lander	A tour through Martian history: An ASRG-pow borehole.
ofan, Ellen	Proxemy Research	Outer Planets	Lander	Titan Mare Explorer (TiME)
cEwen, Alfred	University of Arizona	Outer Planets	Orbiter	Mission Concept: Io Volcano Observer (IVO)
andford, Scott	NASA/AMES	Comet	Sample Return	Concept Study for a Comet Coma Rendezvou Return Mission
unshine, Jessica	Univeristy of Maryland	Comet	Lander	Comet Hopper

